Rocking-Chair Configuration in Ultrathin Lithium Vanadate-Graphene Hybrid Nanosheets for Electrical Modulation

نویسندگان

  • Haiou Zhu
  • Xinming Qin
  • Xu Sun
  • Wensheng Yan
  • Jinlong Yang
  • Yi Xie
چکیده

The ability to control electronic property of a material by externally applied voltage is greatly anticipated in modern electronics, and graphene provide potential application foreground for this issue on account of its exotic ambipolar transport property. In this study, we proposed that inorganic-graphene intercalated nanosheet is an effective solution to optimize the transport property of graphene. As an example, lithium vanadate-graphene (LiVO-graphene) alternately intercalated nanosheets were designed and successfully synthesized. Theoretical calculation implied that its rocking chair configuration may provide a new pathway to switch the carrier in graphene layer between p-type and n-type while the position of embedded Li ions is controlled by an external field. Thus, a demo transistor was fabricated with layer-by-layer overlapping of LiVO-graphene nanosheets which proved that this inorganic-graphene structure could be used for electrical modulation in electronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene-supported anatase TiO2 nanosheets for fast lithium storage.

We have designed a unique hybrid structure by directly growing ultrathin anatase TiO(2) nanosheets onto graphene support for fast lithium storage. With exposed (001) high-energy facets, these TiO(2) nanosheets serve as ideal hosts for fast and efficient lithium storage. On the other hand, the graphene support serves as a highly conductive substrate that is beneficial to the high-rate performance.

متن کامل

Growth of Ultrathin ZnCo2O4 Nanosheets on Reduced Graphene Oxide with Enhanced Lithium Storage Properties

The growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide (denoted as rGO/ZnCo2O4) via a facile low-temperature solution method combined with a subsequent annealing treatment is reported. With the assistance of citrate, interconnected ZnCo2O4 nanosheets can assemble into hierarchically porous overlays on both sides of rGO sheets. Such a hybrid nanostructure would effectively faciliat...

متن کامل

Flexible hierarchical membranes of WS2 nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage.

It is still very challenging to achieve effective combination of carbon nanofibers and graphene sheets. In this study, a novel and facile method is developed to prepare flexible graphene/carbon nanofiber (GCNF) membranes with every carbon nanofiber wrapped by conductive graphene sheets, resulting in a remarkable improvement of their electrical conductivity. This method only entails a moderate p...

متن کامل

Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors.

Ultrathin CoMn2O4 nanosheets supported on reduced graphene oxide (rGO) are successfully synthesized through a simple co-precipitation method with a post-annealing treatment. With the assistance of citrate, the free-standing CoMn2O4 ultrathin nanosheets can form porous overlays on both sides of the rGO sheets. Such a novel hybrid nanostructure can effectively promote charge transport and accommo...

متن کامل

Uniform Nickel Vanadate (Ni3V2O8) Nanowire Arrays Organized by Ultrathin Nanosheets with Enhanced Lithium Storage Properties

Development of three-dimensional nano-architectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a novel type of Ni3V2O8 nanowires, organized by ultrathin hierarchical nanosheets (less than 5 nm) on Ti foil, has been obtained by a two-step hydrothermal synthesis method. Studies on structural and thermal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013